1.6 Enrichment and Extension

Radian Measures of Complementary and Supplementary Angles

A *radian* is a standard unit of measure used to measure angles. The conversion from degrees to radians is $180^\circ = \pi$ radians.

Example 1: Convert the sum of complementary and supplementary angles into radians.

Solution: $90^{\circ} \cdot \frac{\pi \text{ radians}}{180^{\circ}} = \frac{\pi}{2}$ radians $180^{\circ} \cdot \frac{\pi \text{ radians}}{180^{\circ}} = \pi \text{ radians}$ Complementary angles sum to $\frac{\pi}{2}$ radians. Example 2: Determine whether $\frac{3\pi}{8}$ and $\frac{\pi}{4}$ are *complementary*, *supplementary*, or *neither*. Solution: $\frac{\pi}{4} \cdot \left(\frac{2}{2}\right) = \frac{2\pi}{8}$ Multiply by an identity to get the LCD. $\frac{2\pi}{8} + \frac{3\pi}{8} = \frac{5\pi}{8}$ Add the two measurements. The sum of $\frac{5\pi}{8}$ does not equal $\frac{\pi}{2}$ or π , so the final answer is *neither*. In Exercises 1–6, determine whether the two angles are *complementary*,

1.	$\frac{3\pi}{7}, \frac{4\pi}{7}$	2.	$\frac{\pi}{4}, \frac{\pi}{4}$	3.	$\frac{5\pi}{18}, \frac{5\pi}{9}$
4.	$\frac{\pi}{8}, \frac{7\pi}{8}$	5.	$\frac{\pi}{3}, \frac{\pi}{4}$	6.	$\frac{6\pi}{15}, \frac{\pi}{10}$

In Exercises 7–12, find the angle complementary and supplementary to the given angle, if possible.

7.
$$\frac{12\pi}{15}$$
 8. $\frac{23\pi}{42}$ 9. $\frac{3\pi}{17}$

10.
$$\frac{2\pi}{5}$$
 11. $\frac{17\pi}{42}$ **12.** $\frac{7\pi}{8}$

supplementary, or neither.