\qquad

1.6 Enrichment and Extension

Radian Measures of Complementary and Supplementary Angles

A radian is a standard unit of measure used to measure angles. The conversion from degrees to radians is $180^{\circ}=\pi$ radians.

Example 1: Convert the sum of complementary and supplementary angles into radians.
Solution: $90^{\circ} \bullet \frac{\pi \text { radians }}{180^{\circ}}=\frac{\pi}{2}$ radians Complementary angles sum to $\frac{\pi}{2}$ radians.

$$
180^{\circ} \bullet \frac{\pi \text { radians }}{180^{\circ}}=\pi \text { radians } \quad \text { Supplementary angles sum to } \pi \text { radians. }
$$

Example 2: Determine whether $\frac{3 \pi}{8}$ and $\frac{\pi}{4}$ are complementary, supplementary, or neither.
Solution: $\frac{\pi}{4} \bullet\left(\frac{2}{2}\right)=\frac{2 \pi}{8} \quad$ Multiply by an identity to get the LCD.

$$
\frac{2 \pi}{8}+\frac{3 \pi}{8}=\frac{5 \pi}{8}
$$

Add the two measurements.
The sum of $\frac{5 \pi}{8}$ does not equal $\frac{\pi}{2}$ or π, so the final answer is neither.
In Exercises 1-6, determine whether the two angles are complementary, supplementary, or neither.

1. $\frac{3 \pi}{7}, \frac{4 \pi}{7}$
2. $\frac{\pi}{4}, \frac{\pi}{4}$
3. $\frac{5 \pi}{18}, \frac{5 \pi}{9}$
4. $\frac{\pi}{8}, \frac{7 \pi}{8}$
5. $\frac{\pi}{3}, \frac{\pi}{4}$
6. $\frac{6 \pi}{15}, \frac{\pi}{10}$

In Exercises 7-12, find the angle complementary and supplementary to the given angle, if possible.
7. $\frac{12 \pi}{15}$
8. $\frac{23 \pi}{42}$
9. $\frac{3 \pi}{17}$
10. $\frac{2 \pi}{5}$
11. $\frac{17 \pi}{42}$
12. $\frac{7 \pi}{8}$

